

G&B Fissaggi S.r.l.

C.so Savona 22 10029 Villastellone (TO), Italia tel. +39 011 9619433 - fax +39 011 9619382 www.gebfissaggi.com - info@gebfissaggi.com

Declaration of Performance

No. **DPGEB1009** v3

1. Unique identification code of the product-type: **Gebofix EPO PLUS RE**

2. Intended uses:

Intended use of	the construction product according to ETA 17/0347
Generic type:	Bonded injection type anchor for use in non-cracked and cracked concrete
Anchorages subject to:	Static and quasi-static loads: threaded rod M8, M10, M12, M16, M20, M24, M27, M30 reinforcing bar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32
Base materials:	 Reinforced or unreinforced normal weight concrete according to EN 206-1:2000 Strength class C20/25 to C50/60 according to EN 206-1:2000 Non-cracked concrete threaded rod M8, M10, M12, M16, M20, M24, M27, M30 reinforcing bar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32 Cracked concrete threaded rod M12, M16, M20, M24, M27, M30 reinforcing bar Ø12, Ø16, Ø20, Ø25, Ø32
Service temperature range:	I: -40 °C to +40 °C (max. short term temperature +40 °C and max. long term temperature +24 °C) II: -40 °C to +60 °C (max. short term temperature +60 °C and max. long term temperature +43 °C) III: -40 °C to +72 °C (max. short term temperature +72 °C and max. long term temperature +43 °C)
Environmental conditions:	 Elements made of zinc coated or hot-dip galvanized steel, class 4.6, 5.8 or 8.8 dry internal conditions Elements made of stainless steel A2-70, A4-70 or A4-80 dry internal conditions, external atmospheric exposure (including industrial and marine environment) or exposure to permanently damp internal conditions if no particular aggressive conditions exist Elements made of high corrosion resistant steel, property class 70 dry internal conditions, external atmospheric exposure, permanently damp internal conditions or in other particular aggressive conditions, e.g. permanent, alternating immersion in seawater, splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)
Installation:	1: Dry or wet concrete 2: Flooded holes Perforation by hammer drilling Overhead installation is allowed Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on job site

Intended use of	the construction product according to ETA 17/0368
Generic type:	Injection system for post-installed connections of reinforcing bars in existing structures
Anchorages subject to:	Static and quasi-static loads, reinforcing bar Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø25, Ø28, Ø32, Ø40
Base materials:	 Reinforced or unreinforced normal weight concrete according to EN 206-1:2000 Strength class C12/15 to C50/60 according to EN 206-1:2000 Non-carbonated concrete Maximum chloride content 0.40% (CL 0.40) according to EN 206-1:2000

Intended use of	the construction product according to ETA 17/0368
Service temperature range:	-40 °C to +80 °C (max. short term temperature +80 °C and max. long term temperature +50 °C)
Installation:	Dry or wet concrete Perforation by hammer drilling, compressed air drilling or diamond core drilling. The installation of post-installed rebars shall be done only by suitable trained installer and under supervision on site. The conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done. Check the position of the existing rebars.

3. Manufacturer: G&B Fissaggi S.r.I. C.so Savona 22, Villastellone (TO), Italia

5. System of AVCP: 1

6b.

European Assessment Document: ETAG 001 Part 1 and Part 5, edition 2013, used as EAD

European Technical Assessment: ETA 17/0347 European Technical Assessment: ETA 17/0368

Technical Assessment Body: TECHNICKÝ A ZKUŠEBNÍ ÚSTAV STAVEBNÍ PRAHA, s.p.

Notified body: 1020 TECHNICKÝ A ZKUŠEBNÍ ÚSTAV STAVEBNÍ PRAHA, s.p.

7. Declared performances:

Declared performances according to ETAG 001:2013 Part 1 and Part 5, ETA 17/0347 (Design method Technical Report TR 029)

Thread	ded rod diameter		M8	M10	M12	M16	M20	M24	M27	M30
Essen	tial characteristics				•	Perfor	mance			
Installa	ntion parameters									
d	Nominal diameter of bar	[mm]	8	10	12	16	20	24	27	30
d_0	Hole diameter	[mm]	10	12	14	18	22	26	30	35
d _{fix}	Diameter of clearance hole in the fixture	[mm]	9	12	14	18	22	26	30	33
h _{ef,min}	Minimum effective anchorage depth	60	60	70	80	90	96	108	120	
h _{ef,max}	Maximum effective anchorage depth	160	200	240	320	400	480	540	600	
h ₁	Depth of the drilling hole	[mm]				h	l _{ef}			
h _{min}	Minimum thickness of the concrete member	[mm]		h _{ef} + 30 ≥ 100)	h _{ef} + 2d ₀				
T _{inst}	Maximum installation torque	[Nm]	10	20	40	80	120	160	180	200
t _{fix}	Thickness of fixture	[mm]				0 to	1500			
S _{min}	Minimum spacing	[mm]				max (h	_{ef} /2; 5d)		
C _{min}	Minimum edge distance	[mm]				max (h	_{ef} /2; 5d)		
Tensio	n steel failure mode									
$N_{Rk,s}$	Characteristic tension resistance of steel, class 4.6	[kN]	15	23	34	63	98	141	184	224
$N_{Rk,s}$	Characteristic tension resistance of steel, class 5.8	[kN]	18	29	42	78	122	176	230	280
$N_{Rk,s}$	Characteristic tension resistance of steel, class 8.8	[kN]	29	46	67	125	196	282	368	449
N _{Rk,s}	Characteristic tension resistance of steel, A2, A4 and HCR stainless steel	[kN]	26	41	59	110	171	247	321	392

Threade	d rod	diamete	r			M8	M10	M12	M16	M20	M24	M27	M30		
Essentia	al char	racterist	ics						Perfor	mance	I.				
Combine	ed pull-	out and	concrete failure i	node											
Characte	eristic b	ond resi	istance												
	t	temp. I	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	15	15	15	12	12	12	11	9.5		
		•	flooded holes	τ _{Rk,ucr}	[N/mm ²]	15	14	13	10	9.5	8.5	7.5	7.0		
non-crac	1	temp. II	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	9.5	9.5	9.0	8.5	8.0	7.5	7.5	7.5		
concrete		-	flooded holes	$ au_{Rk,ucr}$	[N/mm ²]	9.5	9.5	9.0	8.5	7.5	7.0	6.5	6.0		
	t	temp. III	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	8.5	8.5	8.0	7.5	7.0	7.0	6.5	6.5		
		•	flooded holes	$ au_{Rk,ucr}$	[N/mm ²]	8.5	8.5	8.0	7.5	7.0	6.0	5.5	5.5		
	t	temp. I	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	NI	PD	7.5	6.5	6.0	5.5	5.5	5.5		
			flooded holes	$ au_{Rk,cr}$	[N/mm ²]	NPD		7.5	6.0	5.0	4.5	4.0	4.0		
cracked	t	temp. II	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	NI	NPD		4.0	3.5	3.5	3.5	3.5		
concrete		-	flooded holes	$ au_{Rk,cr}$	[N/mm ²]	NPD		4.5	4.0	3.5	3.5	3.5	3.5		
		temp. III	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	NI	NPD		3.5	3.0	3.0	3.0	3.0		
	tomp. II		flooded holes	$ au_{Rk,cr}$	[N/mm ²]	NI	PD	4.0	3.5	3.0	3.0	3.0	3.0		
Ψc,C30/37	Increa	asing fac	tor for concrete (230/37	[-]				1.	04					
Ψc,C40/50	Increa	asing fac	tor for concrete (C40/50	[-]				1.	07					
Ψc,C50/60	Increa	asing fac	tor for concrete (C50/60	[-]			1.09							
k ₈			CEN/TS 1992-4- cracked concret		[-]		10.1								
k ₈	1		CEN/TS 1992-4- ked concrete	-5 sect.	[-]	NI	PD			7	.2				
Concrete	cone	failure m	node		<u>+</u>										
k _{ucr}			CEN/TS 1992-4- cracked concret		[-]				10).1					
k _{cr}			CEN/TS 1992-4- ked concrete	-5 sect.	[-]	NI	PD			7	.2				
S _{cr,N}	Critica	al spacin	g		[mm]				3.0	h _{ef}					
C _{cr,N}		al edge o	listance		[mm]				1.5	h _{ef}					
Splitting						1									
S _{cr,sp}	_	al spacin			[mm]					cr,sp					
			listance for h/h _{ef}	[mm]				1.0	h _{ef}						
		al edge o	> 1.3		[mm]					- 1.8 h					
			listance for h/h _{ef}	≤ 1.3	[mm]				2.26	3 h _{ef}					
Installatio	1				T										
γinst		•	dry and wet cond	rete	[-]					.0					
	Satety	y tactor,	flooded holes		[-]				1	.0					

Thread	ded rod diameter		M8	M10	M12	M16	M20	M24	M27	M30	
Essent	tial characteristics				1	Perfor	mance			1	
Shear	steel failure mode without lever arm										
$V_{Rk,s}$	Characteristic shear resistance of steel, class 4.6	[kN]	7	12	17	31	49	71	92	112	
$V_{Rk,s}$	Characteristic shear resistance of steel, class 5.8	[kN]	9	15	21	39	61	88	115	140	
$V_{Rk,s}$	Characteristic shear resistance of steel, class 8.8	[kN]	15	23	34	63	98	141	184	224	
$V_{Rk,s}$	Characteristic shear resistance of steel, A2, A4 and HCR stainless steel	[kN]	13	20	30	55	86	124	160	196	
k ₂	Ductility factor acc. to CEN/TS 1992-4-5 sect. 6.3.2.1	[-]				0	.8		,		
Shear	steel failure mode with lever arm										
$M^0_{Rk,s}$	Characteristic bending resistance of steel, class 4.6	[Nm]	15	30	52	133	260	449	666	900	
$M^0_{Rk,s}$	Characteristic bending resistance of steel, class 5.8	[Nm]	19	37	65	166	324	560	833	1123	
$M^0_{Rk,s}$	Characteristic bending resistance of steel, class 8.8	[Nm]	30	60	105	266	519	896	1333	1797	
$M^0_{Rk,s}$	Characteristic bending resistance of steel, A2, A4 and HCR stainless steel	[Nm]	26	53	92	232	454	784	1165	1574	
Concre	ete pry-out failure mode			•	•			•			
k / k ₃	Factor in eq. (5.7) of TR029 / in eq. (27) of CEN/TS 1992-4-5 sect 6.3.3	[mm]				2	.0				
γinst	Installation safety factor	[-]				1	.0				
Concre	ete edge failure mode	•									
l _f	Effective length of anchor	[mm] min(h _{ef} ; 8 d)									
d _{nom}	Outside diameter of anchor	[mm]	8	10	12	12 16 20 24 27					
γ _{inst}	Installation safety factor	[-]		-	,	1	.0				
Displac	cement on tension load, non-cracked concre	te									
N	Service tension load	[kN]	11.9	14.3	19.0	23.8	35.7	35.7	45.2	45.2	
δ_{N0}	Short term displacement under tension load	[mm]	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5	
$\delta_{N^{\boldsymbol{\infty}}}$	Long term displacement under tension load	[mm]	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	
Displac	cement on tension load, cracked concrete										
N	Service tension load	[kN]	NI	PD	14.3	16.7	23.8	28.6	28.6	28.6	
δ_{N0}	Short term displacement under tension load	[mm]	NI	PD	0.4	0.5	0.5	0.6	0.6	0.7	
$\delta_{N^{\infty}}$	Long term displacement under tension load	[mm]	NI	PD	2.0	2.0	2.0	2.0	2.0	2.0	
Displac	cement on shear load, non-cracked and crac	ked cond	rete		,						
V	Service shear load	[kN]	3.5	5.5	8.0	15.0	23.3	33.6	43.7	53.4	
δ_{V0}	Short term displacement under shear load	[mm]	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
δν∞	Long term displacement under shear load	[mm]	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	
	!										

Reinford	cing ba	ar diame	eter			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Essentia	al char	acterist	ics				•	Pe	rforman	се	•	•
Installati	ion para	ameters										
d	Nomin	nal diame	eter of bar		[mm]	8	10	12	16	20	25	32
d_0	Hole d	liameter			[mm]	12	14	16	20	24	32	37
h _{ef,min}	Minim	um effec	ctive anchorage	edepth	[mm]	60	60	70	80	90	100	128
h _{ef,max}	+		ctive anchorag	e depth	[mm]	160	200	240	320	400	500	640
h ₁			rilling hole		[mm]				h _{ef}			
h _{min}	Minim memb		ness of the co	ncrete	[mm]		h _{ef} + 30 ≥ 100			h _{ef} +	- 2d ₀	
S _{min}	Minim	um spac	cing		[mm]		max(h	_{ef} /2; 40)		max(h	_{ef} /2; 50)	max(h _{ef} / 2; 70)
C _{min}			e distance		[mm]		max(h	_{ef} /2; 40)		max(h	_{ef} /2; 50)	max(h _{ef} / 2; 70)
Tension	1											
$N_{Rk,s}$	Chara steel	cteristic	tension resista	nce of	[kN]				$A_s \ x \ f_{uk}$			
-			concrete failur	e mode								
Characte	eristic t	ond res	istance					1				
	te	emp. I	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	13	13	13	12	12	11	8.0
			flooded holes	$ au_{Rk,ucr}$	[N/mm ²]	13	13	11	9.5	8.5	7.5	6.0
non-crac	116	temp. II	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	8.5	8.5	8.0	7.5	7.0	7.0	6.5
concrete	•		flooded holes	$ au_{Rk,ucr}$	[N/mm ²]	8.5	8.5	8.0	7.5	7.0	6.0	5.0
	te	temp. III	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7.5	7.5	7.5	7.0	6.5	6.0	6.0
			flooded holes	τ _{Rk,ucr}	[N/mm ²]	7.5	7.5	7.5	7.0	6.0	5.5	4.5
		1	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	NF	PD	7.5	6.5	6.0	5.5	5.5
	le	emp. I	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	NF	PD	7.5	6.0	5.0	4.5	4.0
cracked	+,	omo II	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	NF	PD	4.5	4.0	3.5	3.5	3.5
concrete	e "	emp. II	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	NF	PD	4.5	4.0	3.5	3.5	3.0
	4.	amp III	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	NF	PD	4.0	3.5	3.0	3.0	3.0
		emp. III	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	NF	PD	4.0	3.5	3.0	3.0	3.0
Ψc,C30/37	Increa C30/3		tor for concrete	•	[-]				1.04			
Ψc,C40/50	Increa C40/5		tor for concrete	;	[-]				1.07			
Ψc,C50/60	Increa C50/6		tor for concrete	•	[-]				1.09			

Reinfo	orcing bar diameter		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32				
Essen	tial characteristics			Į.	Pe	rforman	ce						
k ₈	Factor acc. to CEN/TS 1992-4-5 sect. 6.2.2.3 in non-cracked concrete	[-]				10.1							
k ₈	Factor acc. to CEN/TS 1992-4-5 sect. 6.2.2.3 in cracked concrete	[-]	NF	PD			7.2						
Concre	ete cone failure mode				1								
k _{ucr}	Factor acc. to CEN/TS 1992-4-5 sect. 6.2.3.1 in non-cracked concrete	[-]				10.1							
k _{cr}	Factor acc. to CEN/TS 1992-4-5 sect. 6.2.3.1 in cracked concrete	[-]	NF	PD			7.2						
S _{cr,N}	Critical spacing	[mm]			•	3.0 h _{ef}							
C _{cr,N}	Critical edge distance	[mm]				1.5 h _{ef}							
Splittin	g failure mode												
S _{cr,sp}	Critical spacing	[mm]	2 C _{cr,sp}										
	Critical edge distance for h/h _{ef} ≥ 2.0	[mm]				1.0 h _{ef}							
C _{cr,sp}	Critical edge distance for 2.0 > h/h _{ef} > 1.3	[mm]			4.	6 h _{ef} - 1.8	3 h						
	Critical edge distance for h/h _{ef} ≤ 1.3	[mm]				2.26 h _{ef}							
Installa	ation safety factor		•										
	Safety factor, dry and wet concrete	[-]				1.0							
γinst	Safety factor, flooded holes	[-]	1.2										
Shear	steel failure mode without lever arm												
$V_{Rk,s}$	Characteristic shear resistance of steel	[kN]			0.	.50 · A _s ·	f_{uk}						
k ₂	Ductility factor acc. to CEN/TS 1992- 4-5 sect. 6.3.2.1	[-]				0.8							
Shear	steel failure mode with lever arm												
M ⁰ _{Rk,s}	Characteristic bending resistance of steel	[Nm]			1.	.2 · W _{el} ·	f _{uk}						
Concre	ete pry-out failure mode	!	!										
k / k ₃	Factor in eq. (5.7) of TR029 / in eq. (27) of CEN/TS 1992-4-5 sect 6.3.3	[mm]				2.0							
γinst	Installation safety factor	[-]				1.0							
Concre	ete edge failure mode	ļ.	!										
I _f	Effective length of anchor	[mm]			m	nin(h _{ef} ; 8	d)						
d _{nom}	Outside diameter of anchor	[mm]	8	10	12	16	20	25	32				
γinst	Installation safety factor	[-]				1,0	•	•	•				
Displac	cement on tension load, non-cracked con		•										
N	Service tension load	[kN]	7.6	11.9	16.7	28.6	35.7	45.2	66.7				
δ_{N0}	Short term displacement under tension load	[mm]	0.3	0.3	0.4	0.4	0.4	0.5	0.5				
δ _{N∞}	Long term displacement under tension load	[mm]	0.6	0.6	0.6	0.6	0.6	0.6	0.6				
Displac	cement on tension load, cracked concrete	;			•	•	•	•	-				
N	Service tension load	[kN]	NF	PD	11.9	19.0	23.8	28.6	35.7				
δ_{N0}	Short term displacement under tension load	[mm]	NF	PD	0.4	0.5	0.5	0.6	0.6				

Reinf	orcing bar diameter	Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32	
$\delta_{N^{\infty}}$	Long term displacement under tension load	[mm]	NF	NPD		2.0	2.0	2.0	2.0
Displa	acement on shear load, non-cracked and c	racked c	oncrete						
V	Service shear load	[kN]	6.6	10.3	14.8	26.3	41.1	64.3	105.3
δ_{V0}	Short term displacement under shear load	[mm]	2.5	2.5	2.5	2.5	2.5	2.5	2.5
δ _{V∞}	Long term displacement under shear load	[mm]	3.7	3.7	3.7	3.7	3.7	3.7	3.7

Declared performances according to ETAG 001:2013 Part 1 and Part 5, ETA 17/0368 (Design method EN 1992-1-1:2004)

Reinfo	orcing bar di	amete	r		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	Ø40
Essen	tial Characte	eristic	s						Perfor	mance)			
Installa	ation paramet	ters												
ds	Nominal dia	meter	of bar	[mm]	8	10	12	14	16	20	25	28	32	40
d ₀	Nominal dia	meter	of drill bit	[mm]	12	14	16	18	20	25	32	35	40	55
	hamm		ner drilling	[mm]				30	+ 0.06	· I _v ≥ 2	· d _s			
min c	Minimum concrete	comp drillin	ressed air g	[mm]	50 + 0.08 · I _v									
	cover	diamo drillin	ond core g	[mm]					50 + 0).08 · / _v				
$I_{b,min}$	Minimum ar for good bor			[mm]	113	142	170	198	227	284	354	397	454	851
$I_{0,\mathrm{min}}$	Minimum lap length for good bond conditions			[mm]	200	200	200	210	240	300	375	420	480	900
I _{max}	Maximum in for good bor	[mm]	400	500	600	700	800	1000	1000	1000	1000	1000		
Bond i	resistance													
			C12/15	[N/mm ²]										1.5
			C16/20	[N/mm ²]	2.0									1.8
		Design ultimate bond resistance		[N/mm ²]	2.3									2.1
	bond resistation for hammer			[N/mm ²]	2.7									2.1
f_{bd}	drilling meth		C30/37	[N/mm ²]					3.0					2.1
	and good		C35/45	[N/mm ²]					3.4					2.1
	conditions		C40/50	[N/mm ²]					3.7					2.1
			C45/55	[N/mm ²]					.0				3.7	2.1
			C50/60	[N/mm ²]				4	.3				3.7	2.1
			C12/15	[N/mm ²]					1.6					1.5
			C16/20	[N/mm ²]					2.0					1.8
	Design ultim		C20/25	[N/mm ²]					2.3					2.1
	bond resistation for diamond		C25/30	[N/mm ²]					2.7					2.1
\mathbf{f}_{bd}	drilling meth		C30/37	[N/mm ²]					3.0					2.1
	and good	.545	C35/45	[N/mm ²]					3.4					2.1
	conditions		C40/50	[N/mm ²]				3	.7				3.4	2.1
			C45/55	[N/mm ²]					.0				3.4	2.1
			C50/60	[N/mm ²]				4	.3				3.4	2.1

The performance of the product identified above is in conformity with the set of declared performances. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andrea Maggioni, General manager

Villastellone, 5 May 2017

Toseggi S.r.I.
Corso Savona, n°22
10029 VILLASTELLONE (TO)
Tel. 011 9619433 - Fax 011 9619382

